A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers.

نویسندگان

  • E G Drucker
  • G V Lauder
چکیده

Past study of interspecific variation in the swimming speed of fishes has focused on internal physiological mechanisms that may limit the ability of locomotor muscle to generate power. In this paper, we approach the question of why some fishes are able to swim faster than others from a hydrodynamic perspective, using the technique of digital particle image velocimetry which allows measurement of fluid velocity and estimation of wake momentum and mechanical forces for locomotion. We investigate the structure and strength of the wake in three dimensions to determine how hydrodynamic force varies in two species that differ markedly in maximum swimming speed. Black surfperch (Embiotoca jacksoni) and bluegill sunfish (Lepomis macrochirus) swim at low speeds using their pectoral fins exclusively, and at higher speeds switch to combined pectoral and caudal fin locomotion. E. jacksoni can swim twice as fast as similarly sized L. macrochirus using the pectoral fins alone. The pectoral fin wake of black surfperch at all speeds consists of two distinct vortex rings linked ventrally. As speed increases from 1.0 to 3.0 L s(-)(1), where L is total body length, the vortex ring formed on the fin downstroke reorients to direct force increasingly downstream, parallel to the direction of locomotion. The ratio of laterally to downstream-directed force declines from 0.93 to 0.07 as speed increases. In contrast, the sunfish pectoral fin generates a single vortex ring per fin beat at low swimming speeds and a pair of linked vortex rings (with one ring only partially complete and attached to the body) at maximal labriform speeds. Across a biologically relevant range of swimming speeds, bluegill sunfish generate relatively large lateral forces with the paired fins: the ratio of lateral to downstream force remains at or above 1.0 at all speeds. By increasing wake momentum and by orienting this momentum in a direction more favorable for thrust than for lateral force, black surfperch are able to swim at twice the speed of bluegill sunfish using the pectoral fins. In sunfish, without a reorientation of shed vortices, increases in power output of pectoral fin muscle would have little effect on maximum locomotor speed. We present two hypotheses relating locomotor stability, maneuverability and the structure of the vortex wake. First, at low speeds, the large lateral forces exhibited by both species may be necessary for stability. Second, we propose a potential hydrodynamic trade-off between speed and maneuverability that arises as a geometric consequence of the orientation of vortex rings shed by the pectoral fins. Bluegill sunfish may be more maneuverable because of their ability to generate large mediolateral force asymmetries between the left- and right-side fins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Hydrodynamics of Fish Locomotion: Functional Insights from Wake Visualization1

SYNOPSIS. Despite enormous progress during the last twenty years in understanding the mechanistic basis of aquatic animal propulsion—a task involving the construction of a substantial data base on patterns of fin and body kinematics and locomotor muscle function—there remains a key area in which biologists have little information: the relationship between propulsor activity and water movement i...

متن کامل

Experimental hydrodynamics of fish locomotion: functional insights from wake visualization.

Despite enormous progress during the last twenty years in understanding the mechanistic basis of aquatic animal propulsion-a task involving the construction of a substantial data base on patterns of fin and body kinematics and locomotor muscle function-there remains a key area in which biologists have little information: the relationship between propulsor activity and water movement in the wake...

متن کامل

Effect of the Fast-Skin swim suit on Iranian elite female swimmers' performance

The purpose of this investigation was to consider the Fast-Skin swimsuit's effect on the elite female swimmers’ performance. So, twelve elite swimmers swam 50 and 200 m and 400 m trials with and without Fast-Skin at approximately 80- 100% of maximal effort in four swimming styles. In 400 m freestyle swimming, traditional swimsuit compared with shoulder-to-ankle (SA) and shoulder-to-knee (S...

متن کامل

Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.

We employ numerical simulation to investigate the hydrodynamics of carangiform locomotion as the relative magnitude of viscous and inertial forces, i.e. the Reynolds number (Re), and the tail-beat frequency, i.e. the Strouhal number (St), are systematically varied. The model fish is a three-dimensional (3D) mackerel-like flexible body undulating with prescribed experimental kinematics of carang...

متن کامل

Unsteady flow affects swimming energetics in a labriform fish (Cymatogaster aggregata).

Unsteady water flows are common in nature, yet the swimming performance of fishes is typically evaluated at constant, steady speeds in the laboratory. We examined how cyclic changes in water flow velocity affect the swimming performance and energetics of a labriform swimmer, the shiner surfperch, Cymatogaster aggregata, during station holding. Using intermittent-flow respirometry, we measured c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 203 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2000